
Spalloc client
Release 1!6.0.0

unknown

Apr 12, 2021

CONTENTS

1 Quick-start 3

2 Configuration file format and defaults 5

3 spalloc: Allocate SpiNNaker machines 7
3.1 Basic usage . 7
3.2 Wrapping other commands . 8
3.3 Ethernet-connected chip hostname CSV Format . 8
3.4 Disconnecting and resuming jobs . 8

4 spalloc-job: Manage and reset existing jobs and their boards 9
4.1 Displaying job information . 9
4.2 Controlling board power . 9
4.3 Listing board IP addresses . 9
4.4 Destroying/Cancelling Jobs . 10

5 spalloc-ps: List all running jobs 11

6 spalloc-machine: List available machines and their running jobs 13

7 spalloc-where-is: Query the server for the physical/logical locations of boards/chips 15

8 Python library 17
8.1 High level interface (spalloc.Job) . 17
8.2 Lower level interface (spalloc.ProtocolClient) . 22

9 Indicies and Tables 25

Python Module Index 27

Index 29

i

ii

Spalloc client, Release 1!6.0.0

Spalloc is a Python library and set of command-line programs for requesting SpiNNaker machines from a spalloc
server.

CONTENTS 1

http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
https://github.com/SpiNNakerManchester/spalloc_server

Spalloc client, Release 1!6.0.0

2 CONTENTS

CHAPTER

ONE

QUICK-START

Step 1: Install spalloc:

$ pip install spalloc

Step 2: Write a configuration file indicating your email address and the spalloc server’s address (run python -m
spalloc.config to discover what to call your config file on your machine):

[spalloc]
hostname = my_server
owner = jdh@cs.man.ac.uk

Step 3: Request a system using the command-line interface, e.g. a three-board machine:

$ spalloc 3

. . . or request one from Python. . .

>>> from spalloc import Job
>>> with Job(3) as j:
... my_boot(j.hostname, j.width, j.height)
... my_application(j.hostname)

Note: When a machine is allocated it is powered on but not booted: that is up to you. If Rig is installed on your
system the spalloc commandline tool provides a --boot option which will boot the allocated machine for you.

Note: The dimensions of a machine may not be what you’re used to and may change from allocation to allocation,
even for the same number of boards.

Note: When you’re finished with the boards you were allocated, pressing enter (or exiting the with block in the
Python version) will automatically shut them down and allow them to be used by others.

3

https://github.com/SpiNNakerManchester/rig

Spalloc client, Release 1!6.0.0

4 Chapter 1. Quick-start

CHAPTER

TWO

CONFIGURATION FILE FORMAT AND DEFAULTS

The spalloc command-line tool and Python library determine their default configuration options from a spalloc con-
figuration file if present.

Note: Use of spalloc’s configuration files is entirely optional as all configuration options may be presented as argu-
ments to commands/methods at runtime.

By default, configuration files are read (in ascending order of priority) from a system-wide configuration directory (e.g.
/etc/xdg/spalloc), user configuration file (e.g. $HOME/.config/spalloc) and finally the current working
directory (in a file named .spalloc). The default search paths on your system can be discovered by running:

$ python -m spalloc.config

Config files use the Python configparser INI-format with a single section, spalloc, like so:

[spalloc]
hostname = localhost
owner = jdh@cs.man.ac.uk

Though most users will only wish to specify the hostname and owner options (as in the example above), the
following enumerates the complete set of options available (and the default value).

hostname The hostname or IP address of the spalloc-server to connect to.

owner The name of the owner of created jobs. By convention the user’s email address.

port The port used by the spalloc-server. (Default: 22244)

keepalive The keepalive interval, in seconds, to use when creating jobs. If the spalloc-server does not receive
a keepalive command for this interval the job is automatically destroyed. May be set to None to disable this
feature. (Default: 60.0)

reconnect_delay The time, in seconds, to wait between reconnection attempts to the server if disconnected.
(Default 5.0)

timeout The time, in seconds, to wait before giving up waiting for a response from the server or None to wait
forever. (Default 5.0)

machine The name of a specific machine on which to run all jobs or None to use any available machine. (Default:
None)

tags The set of tags, comma seperated, to require a machine to have when allocating jobs. (Default: default)

min_ratio Require that when allocating a number of boards the allocation is at least as square as this aspect ratio.
(Default: 0.333)

5

https://docs.python.org/3/library/configparser.html#module-configparser

Spalloc client, Release 1!6.0.0

max_dead_boards The maximum number of dead boards which may be present in an allocated set of boards or
None to allow any number of dead boards. (Default: 0)

max_dead_links The maximum number of dead links which may be present in an allocated set of boards or None
to allow any number of dead links. (Default: None)

require_torus If True, require that an allocation have wrap-around links. This typically requires the allocation
of a whole machine. If False, wrap-around links may or may-not be present in allocated machines. (Default:
False)

6 Chapter 2. Configuration file format and defaults

CHAPTER

THREE

SPALLOC: ALLOCATE SPINNAKER MACHINES

A command-line utility for creating jobs.

Note: In the examples below, it is assumed that the spalloc server hostname and a suitable owner name have been
specified in a config file.

3.1 Basic usage

By default, the spalloc command allocates a job according to the command-line specification and then waits for
boards to be allocated and powered on.

Note: By default, allocated machines are powered on but not booted. If Rig is installed, spalloc provides a
--boot option which also boots the allocated machine once it has been powered on. This dependency can be installed
using the [boot] option at install time for spalloc.

The spalloc command can be called in one of the following styles though most users will probably only require the
first two.

Invocation Allocation
spalloc A single SpiNN-5 board
spalloc 5 A machine with at least 5 boards
spalloc 4 2 A 4x2 triad machine.
spalloc 3 4 0 A single SpiNN-5 board at logical position (3, 4, 0)

A range of additional command-line arguments are available to control various aspects of Job allocation, run spalloc
--help for a complete listing.

7

https://github.com/project-rig/rig

Spalloc client, Release 1!6.0.0

3.2 Wrapping other commands

The spalloc command can alternatively wrap an existing command, calling it once a SpiNNaker machine is allo-
cated and cleaning up the job when the command exits:

$ spalloc 24 -c "rig-boot {} {w} {h} && python my_app.py {}"

The example above attempts to allocate a 24-board machine and, once allocated and powered on, calls the command
above, with the arguments in curly braces substituted for details of the allocated machine.

The following substitutions are available:

Token Substitution
{} Chip 0, 0’s hostname
{hostname} Chip 0, 0’s hostname
{w} Width of the system (in chips)
{width} Width of the system (in chips)
{h} Height of the system (in chips)
{height} Height of the system (in chips)
{ethernet_ips} Filename of a CSV of Ethernet IPs
{id} The job ID

3.3 Ethernet-connected chip hostname CSV Format

Hostnames for all Ethernet-connected SpiNNaker chips in a machine are provided in a CSV file with three columns::
x, y and hostname. The CSV file is newline (\n) delimited and the first row is a header.

3.4 Disconnecting and resuming jobs

Warning: This functionality is intended for advanced users only.

By default, when the spalloc command exits, the job will be destroyed and any allocated boards freed. This
behaviour can be disabled with the --no-destroy argument, leaving the job allocated after the command exits.

Such a job may be ‘resumed’ by calling spalloc with the --resume [JOB_ID] option.

Note that by default, jobs require a ‘keepalive’ message to be sent to the server at a regular interval. While the
spalloc command is running, these messages are sent automatically but after exiting the commands are no longer
sent. Adding the --keepalive -1 option when creating a job disables this.

8 Chapter 3. spalloc: Allocate SpiNNaker machines

CHAPTER

FOUR

SPALLOC-JOB: MANAGE AND RESET EXISTING JOBS AND THEIR
BOARDS

Command-line administrative job management interface.

spalloc-job may be called with a job ID, or if no arguments supplied your currently running job is shown by
default. Various actions may be taken and each is described below.

4.1 Displaying job information

By default, the command displays all known information about a job.

The --watch option may be added which will cause the output to be updated in real-time as a job’s state changes.
For example:

$ spalloc-job --watch

4.2 Controlling board power

The boards allocated to a job may be reset or powered on/off on demand (by anybody, at any time) by adding the
--power-on, --power-off or --reset options. For example:

$ spalloc-job --reset

Note: This command blocks until the action is completed.

4.3 Listing board IP addresses

The hostnames of Ethernet-attached chips can be listed in CSV format by adding the –ethernet-ips argument:

$ spalloc-job --ethernet-ips
x,y,hostname
0,0,192.168.1.97
0,12,192.168.1.105
4,8,192.168.1.129

(continues on next page)

9

Spalloc client, Release 1!6.0.0

(continued from previous page)

4,20,192.168.1.137
8,4,192.168.1.161
8,16,192.168.1.169

4.4 Destroying/Cancelling Jobs

Jobs can be destroyed (by anybody, at any time) using the --destroy option which optionally accepts a human-
readable explanation:

$ spalloc-job --destroy "Your job is taking too long..."

Warning: That this “super power” should be used carefully since the user may not be notified that their job was
destroyed and the first sign of this will be their boards being powered down and re-partitioned ready for another
user.

10 Chapter 4. spalloc-job: Manage and reset existing jobs and their boards

CHAPTER

FIVE

SPALLOC-PS: LIST ALL RUNNING JOBS

An administrative command-line process listing utility.

By default, the spalloc-ps command lists all running and queued jobs. For a real-time monitor of queued and
running jobs, the --watch option may be added.

This list may be filtered by owner or machine with the --owner and --machine arguments.

11

Spalloc client, Release 1!6.0.0

12 Chapter 5. spalloc-ps: List all running jobs

CHAPTER

SIX

SPALLOC-MACHINE: LIST AVAILABLE MACHINES AND THEIR
RUNNING JOBS

Command-line administrative machine management interface.

When called with no arguments the spalloc-machine command lists all available machines and a summary of
their current load.

If a specific machine is given as an argument, the current allocation of jobs to machines is displayed:

Adding the --detailed option displays additional information about jobs running on a machine.

If the --watch option is given, the information displayed is updated in real-time.

13

Spalloc client, Release 1!6.0.0

14 Chapter 6. spalloc-machine: List available machines and their running jobs

CHAPTER

SEVEN

SPALLOC-WHERE-IS: QUERY THE SERVER FOR THE
PHYSICAL/LOGICAL LOCATIONS OF BOARDS/CHIPS

Command-line tool to find out where a particular chip or board resides.

The spalloc-where-is command allows you to query boards by coordinate, by physical location, by chip or by
job. In response to a query, a standard set of information is displayed as shown in the example below:

$ spalloc-where-is --job-chip 24 14, 3
Machine: my-machine

Physical Location: Cabinet 2, Frame 4, Board 7
Board Coordinate: (3, 4, 0)

Machine Chip Coordinates: (38, 51)
Coordinates within board: (2, 3)

Job using board: 24
Coordinates within job: (14, 3)

In this example we ask, ‘where is chip (14, 3) in job 24’? We discover that:

• The chip is the machine named ‘my-machine’ on the board in cabinet 2, frame 4, board 7.

• This board’s logical board coordinates are (3, 4, 0). These logical coordinates may be used to specifically request
this board from Spalloc in the future.

• If ‘my-machine’ were booted as a single large machine, the chip we queried would be chip (38, 51). This may
be useful for cross-referencing with diagrams produced by SpiNNer.

• The chip in question is chip (2, 3) its board. This may be useful when reporting faulty chips/replacing boards..

• The job currently running on the board has ID 24. Obviously in this example we already knew this but this may
be useful when querying by board.

• Finally, we’re told that the queried chip has the coordinates (14, 3) in the machine allocated to job 24. Again,
this information may be more useful when querying by board.

To query by logical board coordinate:

spalloc-where-is --board MACHINE X Y Z

To query by physical board location:

spalloc-where-is --physical MACHINE CABINET FRAME BOARD

To query by chip coordinate (as if the machine were booted as one large machine):

spalloc-where-is --chip MACHINE X Y

To query by chip coordinate of chips allocated to a job:

15

https://github.com/SpiNNakerManchester/SpiNNer

Spalloc client, Release 1!6.0.0

spalloc-where-is --job-chip JOB_ID X Y

16Chapter 7. spalloc-where-is: Query the server for the physical/logical locations of boards/chips

CHAPTER

EIGHT

PYTHON LIBRARY

Spalloc provides a pair of Python libraries which enable basic high- and low-level interaction with a spalloc server.
The high-level Job interface makes the task of creating jobs (and keeping them alive) straight-forward but only
facilitates basic job management functions such as resetting boards and getting their IP addresses. The low-level
ProtocolClient provides an RPC-like interface to the spalloc server enabling any spalloc server command to be
sent.

Note: These libraries are intentionally simplistic and may be unsuitable for very advanced applications. In such
instances, users are encouraged to implement the spalloc server protocol in a manner better suited to their specific
use-case.

8.1 High level interface (spalloc.Job)

class spalloc.Job(*args, **kwargs)
A high-level interface for requesting and managing allocations of SpiNNaker boards.

Constructing a Job object connects to a spalloc-server and requests a number of SpiNNaker boards. See the
constructor for details of the types of requests which may be made. The job object may then be used to
monitor the state of the request, control the boards allocated and determine their IP addresses.

In its simplest form, a Job can be used as a context manager like so:

>>> from spalloc import Job
>>> with Job(6) as j:
... my_boot(j.hostname, j.width, j.height)
... my_application(j.hostname)

In this example a six-board machine is requested and the with context is entered once the allocation has been
made and the allocated boards are fully powered on. When control leaves the block, the job is destroyed and the
boards shut down by the server ready for another job.

For more fine-grained control, the same functionality is available via various methods:

>>> from spalloc import Job
>>> j = Job(6)
>>> j.wait_until_ready()
>>> my_boot(j.hostname, j.width, j.height)
>>> my_application(j.hostname)
>>> j.destroy()

17

http://spalloc-server.readthedocs.org/en/stable/protocol.html
https://github.com/SpiNNakerManchester/spalloc_server

Spalloc client, Release 1!6.0.0

Note: More complex applications may wish to log the following attributes of their job to support later debug-
ging efforts:

• job.id – May be used to query the state of the job and find out its fate if cancelled or destroyed. The
spalloc-job command can be used to discover the state/fate of the job and spalloc-where-is
may be used to find out what boards problem chips reside on.

• job.machine_name and job.boards together give a complete record of the hardware used by the
job. The spalloc-where-is command may be used to find out the physical locations of the boards
used.

Job objects have the following attributes which describe the job and its allocated machines:

Attributes

job.id [int or None] The job ID allocated by the server to the job.

job.state [JobState] The current state of the job.

job.power [bool or None] If boards have been allocated to the job, are they on (True) or off
(False). None if no boards are allocated to the job.

job.reason [str or None] If the job has been destroyed, gives the reason (which may be None),
or None if the job has not been destroyed.

job.hostname [str or None] The hostname of the SpiNNaker chip at (0, 0), or None if no boards
have been allocated to the job.

job.connections [{(x, y): hostname, . . . } or None] The hostnames of all Ethernet-connected
SpiNNaker chips, or None if no boards have been allocated to the job.

job.width [int or None] The width of the SpiNNaker network in chips, or None if no boards
have been allocated to the job.

job.height [int or None] The height of the SpiNNaker network in chips, or None if no boards
have been allocated to the job.

job.machine_name [str or None] The name of the machine the boards are allocated in, or None
if not yet allocated.

job.boards [[[x, y, z], . . .] or None] The logical coordinates allocated to the job, or None if not
yet allocated.

__init__(*args, **kwargs)
Request a SpiNNaker machine.

A Job is constructed in one of the following styles:

>>> # Any single (SpiNN-5) board
>>> Job()
>>> Job(1)

>>> # Any machine with at least 4 boards
>>> Job(4)

>>> # Any 7-or-more board machine with an aspect ratio at least as
>>> # square as 1:2
>>> Job(7, min_ratio=0.5)

>>> # Any 4x5 triad segment of a machine (may or may-not be a

(continues on next page)

18 Chapter 8. Python library

Spalloc client, Release 1!6.0.0

(continued from previous page)

>>> # torus/full machine)
>>> Job(4, 5)

>>> # Any torus-connected (full machine) 4x2 machine
>>> Job(4, 2, require_torus=True)

>>> # Board x=3, y=2, z=1 on the machine named "m"
>>> Job(3, 2, 1, machine="m")

>>> # Keep using (and keeping-alive) an existing allocation
>>> Job(resume_job_id=123)

Once finished with a Job, the destroy() (or in unusual applications Job.close()) method must be
called to destroy the job, close the connection to the server and terminate the background keep-alive thread.
Alternatively, a Job may be used as a context manager which automatically calls destroy() on exiting
the block:

>>> with Job() as j:
... # ...for example...
... my_boot(j.hostname, j.width, j.height)
... my_application(j.hostname)

The following keyword-only parameters below are used both to specify the server details as well as the job
requirements. Most parameters default to the values supplied in the local config file allowing usage as
in the examples above.

Parameters

hostname [str] Required. The name of the spalloc server to connect to. (Read from config
file if not specified.)

port [int] The port number of the spalloc server to connect to. (Read from config file if not
specified.)

reconnect_delay [float] Number of seconds between attempts to reconnect to the server.
(Read from config file if not specified.)

timeout [float or None] Timeout for waiting for replies from the server. If None, will keep
trying forever. (Read from config file if not specified.)

config_filenames [[str, . . .]] If given must be a list of filenames to read configuration options
from. If not supplied, the default config file locations are searched. Set to an empty list to
prevent using values from config files.

Other Parameters

resume_job_id [int or None] If supplied, rather than creating a new job, take on an existing
one, keeping it alive as required by the original job. If this argument is used, all other
requirements are ignored.

owner [str] Required. The name of the owner of the job. By convention this should be your
email address. (Read from config file if not specified.)

keepalive [float or None] The number of seconds after which the server may consider the
job dead if this client cannot communicate with it. If None, no timeout will be used and
the job will run until explicitly destroyed. Use with extreme caution. (Read from config
file if not specified.)

8.1. High level interface (spalloc.Job) 19

Spalloc client, Release 1!6.0.0

machine [str or None] Specify the name of a machine which this job must be executed on.
If None, the first suitable machine available will be used, according to the tags selected
below. Must be None when tags are given. (Read from config file if not specified.)

tags [[str, . . .] or None] The set of tags which any machine running this job must have. If
None is supplied, only machines with the “default” tag will be used. If machine is given,
this argument must be None. (Read from config file if not specified.)

min_ratio [float] The aspect ratio (h/w) which the allocated region must be ‘at least as
square as’. Set to 0.0 for any allowable shape, 1.0 to be exactly square etc. Ignored when
allocating single boards or specific rectangles of triads.

max_dead_boards [int or None] The maximum number of broken or unreachable boards
to allow in the allocated region. If None, any number of dead boards is permitted, as long
as the board on the bottom-left corner is alive. (Read from config file if not specified.)

max_dead_links [int or None] The maximum number of broken links allow in the allocated
region. When require_torus is True this includes wrap-around links, otherwise peripheral
links are not counted. If None, any number of broken links is allowed. (Read from config
file if not specified.).

require_torus [bool] If True, only allocate blocks with torus connectivity. In general this
will only succeed for requests to allocate an entire machine. Must be False when allocating
boards. (Read from config file if not specified.)

__enter__()
Convenience context manager for common case where a new job is to be created and then destroyed once
some code has executed.

Waits for machine to be ready before the context enters and frees the allocation when the context exits.

Example:

>>> from spalloc import Job
>>> with Job(6) as j:
... my_boot(j.hostname, j.width, j.height)
... my_application(j.hostname)

destroy(reason=None)
Destroy the job and disconnect from the server.

Parameters

reason [str or None] Optional. Gives a human-readable explanation for the destruction of
the job.

close()
Disconnect from the server and stop keeping the job alive.

Warning: This method does not free the resources allocated by the job but rather simply disconnects
from the server and ceases sending keep-alive messages. Most applications should use destroy()
instead.

set_power(power)
Turn the boards allocated to the job on or off.

Does nothing if the job has not yet been allocated any boards.

The wait_until_ready() method may be used to wait for the boards to fully turn on or off.

20 Chapter 8. Python library

Spalloc client, Release 1!6.0.0

Parameters

power [bool] True to power on the boards, False to power off. If the boards are already
turned on, setting power to True will reset them.

reset()
Reset (power-cycle) the boards allocated to the job.

Does nothing if the job has not been allocated.

The wait_until_ready() method may be used to wait for the boards to fully turn on or off.

property state
The current state of the job.

property power
Are the boards powered/powering on or off?

property reason
For what reason was the job destroyed (if any and if destroyed).

property connections
The list of Ethernet connected chips and their IPs.

Returns

{(x, y): hostname, . . . } or None

property hostname
The hostname of chip 0, 0 (or None if not allocated yet).

property width
The width of the allocated machine in chips (or None).

property height
The height of the allocated machine in chips (or None).

property machine_name
The name of the machine the job is allocated on (or None).

property boards
The coordinates of the boards allocated for the job (or None).

wait_for_state_change(old_state, timeout=None)
Block until the job’s state changes from the supplied state.

Parameters

old_state [JobState] The current state.

timeout [float or None] The number of seconds to wait for a change before timing out. If
None, wait forever.

Returns

JobState The new state, or old state if timed out.

wait_until_ready(timeout=None)
Block until the job is allocated and ready.

Parameters

timeout [float or None] The number of seconds to wait before timing out. If None, wait
forever.

Raises

8.1. High level interface (spalloc.Job) 21

Spalloc client, Release 1!6.0.0

StateChangeTimeoutError If the timeout expired before the ready state was entered.

JobDestroyedError If the job was destroyed before becoming ready.

where_is_machine(chip_x, chip_y)
Locates and returns cabinet, frame, board for a given chip in a machine allocated to this job.

Parameters

• chip_x – chip x location

• chip_y – chip y location

Returns tuple of (cabinet, frame, board)

__weakref__
list of weak references to the object (if defined)

class spalloc.JobState(value)
All the possible states that a job may be in.

unknown = 0
The job ID requested was not recognised.

queued = 1
The job is waiting in a queue for a suitable machine.

power = 2
The boards allocated to the job are currently being powered on or powered off.

ready = 3
The job has been allocated boards and the boards are not currently powering on or powering off.

destroyed = 4
The job has been destroyed.

exception spalloc.JobDestroyedError
Thrown when the job was destroyed while waiting for it to become ready.

exception spalloc.StateChangeTimeoutError
Thrown when a state change takes too long to occur.

8.2 Lower level interface (spalloc.ProtocolClient)

class spalloc.ProtocolClient(hostname, port=22244, timeout=None)
A simple (blocking) client implementation of the spalloc-server protocol.

This minimal implementation is intended to serve both simple applications and as an example implementation
of the protocol for other applications. This implementation simply implements the protocol, presenting an
RPC-like interface to the server. For a higher-level interface built on top of this client, see spalloc.Job.

Usage examples:

Connect to a spalloc_server
with ProtocolClient("hostname") as c:

Call commands by name
print(c.call("version")) # '0.1.0'

Call commands as if they were methods
print(c.version()) # '0.1.0'

(continues on next page)

22 Chapter 8. Python library

https://github.com/SpiNNakerManchester/spalloc_server

Spalloc client, Release 1!6.0.0

(continued from previous page)

Wait an event to be received
print(c.wait_for_notification()) # {"jobs_changed": [1, 3]}

Done!

__init__(hostname, port=22244, timeout=None)
Define a new connection.

Note: Does not connect to the server until connect() is called.

Parameters

hostname [str] The hostname of the server.

port [str or int] The port to use (default: 22244).

connect(timeout=None)
(Re)connect to the server.

Raises

OSError, IOError If a connection failure occurs.

close()
Disconnect from the server.

call(name, *args, **kwargs)
Send a command to the server and return the reply.

Parameters

name [str] The name of the command to send.

timeout [float or None] The number of seconds to wait before timing out or None if this
function should wait forever. (Default: None)

Returns

object The object returned by the server.

Raises

ProtocolTimeoutError If a timeout occurs.

ProtocolError If the connection is unavailable or is closed.

wait_for_notification(timeout=None)
Return the next notification to arrive.

Parameters

name [str] The name of the command to send.

timeout [float or None] The number of seconds to wait before timing out or None if this
function should try again forever.

If negative only responses already-received will be returned. If no responses are available,
in this case the function does not raise a ProtocolTimeoutError but returns None instead.

Returns

object The notification sent by the server.

8.2. Lower level interface (spalloc.ProtocolClient) 23

Spalloc client, Release 1!6.0.0

Raises

ProtocolTimeoutError If a timeout occurs.

ProtocolError If the socket is unusable or becomes disconnected.

__weakref__
list of weak references to the object (if defined)

exception spalloc.ProtocolTimeoutError
Thrown upon a protocol-level timeout.

24 Chapter 8. Python library

CHAPTER

NINE

INDICIES AND TABLES

• genindex

• modindex

• search

25

Spalloc client, Release 1!6.0.0

26 Chapter 9. Indicies and Tables

PYTHON MODULE INDEX

s
spalloc.config, 5
spalloc.scripts.alloc, 7
spalloc.scripts.job, 9
spalloc.scripts.machine, 13
spalloc.scripts.ps, 11
spalloc.scripts.where_is, 15

27

Spalloc client, Release 1!6.0.0

28 Python Module Index

INDEX

Symbols
__enter__() (spalloc.Job method), 20
__init__() (spalloc.Job method), 18
__init__() (spalloc.ProtocolClient method), 23
__weakref__ (spalloc.Job attribute), 22
__weakref__ (spalloc.ProtocolClient attribute), 24

B
boards() (spalloc.Job property), 21

C
call() (spalloc.ProtocolClient method), 23
close() (spalloc.Job method), 20
close() (spalloc.ProtocolClient method), 23
connect() (spalloc.ProtocolClient method), 23
connections() (spalloc.Job property), 21

D
destroy() (spalloc.Job method), 20
destroyed (spalloc.JobState attribute), 22

H
height() (spalloc.Job property), 21
hostname() (spalloc.Job property), 21

J
Job (class in spalloc), 17
JobDestroyedError, 22
JobState (class in spalloc), 22

M
machine_name() (spalloc.Job property), 21
module

spalloc.config, 5
spalloc.scripts.alloc, 7
spalloc.scripts.job, 9
spalloc.scripts.machine, 13
spalloc.scripts.ps, 11
spalloc.scripts.where_is, 15

P
power (spalloc.JobState attribute), 22

power() (spalloc.Job property), 21
ProtocolClient (class in spalloc), 22
ProtocolTimeoutError, 24

Q
queued (spalloc.JobState attribute), 22

R
ready (spalloc.JobState attribute), 22
reason() (spalloc.Job property), 21
reset() (spalloc.Job method), 21

S
set_power() (spalloc.Job method), 20
spalloc.config

module, 5
spalloc.scripts.alloc

module, 7
spalloc.scripts.job

module, 9
spalloc.scripts.machine

module, 13
spalloc.scripts.ps

module, 11
spalloc.scripts.where_is

module, 15
state() (spalloc.Job property), 21
StateChangeTimeoutError, 22

U
unknown (spalloc.JobState attribute), 22

W
wait_for_notification() (spal-

loc.ProtocolClient method), 23
wait_for_state_change() (spalloc.Job method),

21
wait_until_ready() (spalloc.Job method), 21
where_is_machine() (spalloc.Job method), 22
width() (spalloc.Job property), 21

29

	Quick-start
	Configuration file format and defaults
	spalloc: Allocate SpiNNaker machines
	Basic usage
	Wrapping other commands
	Ethernet-connected chip hostname CSV Format
	Disconnecting and resuming jobs

	spalloc-job: Manage and reset existing jobs and their boards
	Displaying job information
	Controlling board power
	Listing board IP addresses
	Destroying/Cancelling Jobs

	spalloc-ps: List all running jobs
	spalloc-machine: List available machines and their running jobs
	spalloc-where-is: Query the server for the physical/logical locations of boards/chips
	Python library
	High level interface (spalloc.Job)
	Lower level interface (spalloc.ProtocolClient)

	Indicies and Tables
	Python Module Index
	Index

